Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Exp Biol Med (Maywood) ; 247(17): 1570-1576, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1896295

ABSTRACT

D-dimer is an established biomarker of thromboembolism and severity in COVID-19. We and others have recently reported the dysregulation of tissue factor pathway inhibitor (TFPI), FXIII, fibrinolytic pathway, inflammatory markers, and tissue injury markers, particularly in severe COVID-19. However, association of these markers with thromboembolism in COVID-19 remains elusive. The correlation analyses between these markers in patients with moderate (non-ICU) and severe COVID-19 (ICU) were performed to delineate the potential pathomechanisms and impact of thromboembolism. We observe a negative correlation of plasma TFPI (r2 = 0.148, P = 0.035), FXIII (r2 = 0.242, P = 0.006), and plasminogen (r2 = 0.27, P = 0.003) with D-dimer, a biomarker of thromboembolism, levels in these patients. Further analysis revealed a strong positive correlation between fibrinolytic markers tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) (r2 = 0.584, P < 0.0001). Interestingly, a significant positive correlation of PAI-1, but not tPA, was observed with platelets and endothelial cells dysfunction markers P-selectin (r2 = 0.184, P = 0.01) and soluble CD40 ligand (sCD40 L) (r2 = 0.163, P = 0.02). Moreover, calprotectin (S100A8/A9) and cystatin C (CST3), previously linked with thromboembolism, exhibited positive correlations with each other (r2 = 0.339, P = 0.0007) and with the level of D-dimer independently in COVID-19. Finally, the tissue injury marker myoglobin demonstrated a strong positive correlation with D-dimer (r2 = 0.408, P = 0.0001). Taken together, inverse correlations of TFPI and FXIII with D-dimer suggest the TF pathway activation and aberrant fibrin polymerization in COVID-19 patients. The elevated level of PAI-1 is potentially contributed by activated platelets and endothelial cells. S100A8/A9 may also play roles in impaired fibrinolysis and thromboembolism, in part, through regulating the CST3. These findings strengthen the understanding of thromboembolism and tissue injury and may help in better management of thromboembolic complications in COVID-19 patients.


Subject(s)
COVID-19 , Thromboembolism , Biomarkers , CD40 Ligand/metabolism , Cystatin C/metabolism , Endothelial Cells/metabolism , Fibrin Fibrinogen Degradation Products/metabolism , Fibrinolysis/physiology , Humans , Leukocyte L1 Antigen Complex , Lipoproteins , Myoglobin/metabolism , P-Selectin/metabolism , Plasminogen/metabolism , Plasminogen Activator Inhibitor 1 , Tissue Plasminogen Activator/metabolism
2.
Exp Biol Med (Maywood) ; 247(14): 1205-1213, 2022 07.
Article in English | MEDLINE | ID: covidwho-1808181

ABSTRACT

Severe coronavirus (SARS-COV-2) infection often leads to systemic inflammation accompanied by cardiovascular complications including venous thromboembolism (VTE). However, it is largely undefined if inflammatory markers such as lipocalin-2 (LNC2), calprotectin (S100A8/A9), and cystatin C (CST3), previously linked with VTE, play roles in cardiovascular complications and advancement of COVID-19 severity. To investigate the same, hospitalized moderate and severe (presented pneumonia and required intensive care) COVID-19 patients were recruited. The levels of plasma LNC2, S100A8/A9, CST3, myoglobin, and cardiac Troponin I (cTnI) were assessed through enzyme-linked immunosorbent assay (ELISA). The investigation revealed a significantly upregulated level of plasma LNC2 at the moderate stage of SARS-CoV-2 infection. In contrast, the levels of S100A8/A9 and CST3 in moderate patients were comparable to healthy controls; however, a profound induction was observed only in severe COVID-19 patients. The tissue injury marker myoglobin was unchanged in moderate patients; however, a significantly elevated level was observed in the critically ill COVID-19 patients. In contrast, cTnI level was unchanged both in moderate and severe patients. Analysis revealed a positive correlation between the levels of S100A8/A9 and CST3 with myoglobin in COVID-19. In silico analysis predicted interactions of S100A8/A9 with toll-like receptor 4 (TLR-4), MyD88 LY96, and LCN2 with several other inflammatory mediators including MMP2, MMP9, TIMP1, and interleukins (IL-6, IL-17A, and IL-10). In summary, early induction of LCN2 likely plays a role in advancing the COVID-19 severity. A positive correlation of S100A8/A9 and CST3 with myoglobin suggests that these proteins may serve as predictive biomarkers for thromboembolism and tissue injury in COVID-19.


Subject(s)
COVID-19 , Venous Thromboembolism , Biomarkers , COVID-19/complications , Calgranulin A/metabolism , Calgranulin B/metabolism , Cystatin C/metabolism , Humans , Lipocalin-2 , Myoglobin/metabolism , SARS-CoV-2
3.
Sci Rep ; 12(1): 2389, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1684112

ABSTRACT

Cardiac damage in non-severe patients with coronavirus disease 2019 (COVID-19) is poorly explored. This study aimed to explore the manifestations of cardiac damage at presentation in non-severe patients with COVID-19. In this study, 113 non-severe patients with COVID-19 were grouped according to the duration from symptoms onset to hospital admission: group 1 (≤ 1 week, n = 27), group 2 (> 1 to 2 weeks, n = 28), group 3 (> 2 to 3 weeks, n = 27), group 4 (> 3 weeks, n = 31). Clinical, cardiovascular, and radiological data on hospital admission were compared across the four groups. The level of high sensitivity troponin I (hs-cTnI) in group 2 [10.25 (IQR 6.75-15.63) ng/L] was significantly higher than those in group 1 [1.90 (IQR 1.90-8.80) ng/L] and group 4 [1.90 (IQR 1.90-5.80) ng/L] (all Pbonferroni < 0.05). The proportion of patients who had a level of hs-cTnI ≥ 5 ng/L in group 2 (85.71%) was significantly higher than those in the other three groups (37.04%, 51.85%, and 25.81%, respectively) (all Pbonferroni < 0.05). Compared with patients with hs-cTnI under 5 ng/L, those with hs-cTnI ≥ 5 ng/L had lower lymphocyte count (P = 0.000) and SpO2 (P = 0.002) and higher CRP (P = 0.000). Patients with hs-cTnI ≥ 5 ng/L had a higher incidence of bilateral pneumonia (P = 0.000) and longer hospital length of stay (P = 0.000). In conclusion, non-severe patients with COVID-19 in the second week after symptoms onset were most likely to suffer cardiac damage. A detectable level of hs-cTnI ≥ 5 ng/L might be a manifestation of early cardiac damage in the patients.


Subject(s)
COVID-19/complications , Heart Diseases/blood , Troponin I/blood , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/blood , COVID-19/diagnostic imaging , Female , Heart Diseases/virology , Humans , Lymphocyte Count , Male , Middle Aged , Myoglobin/metabolism , Natriuretic Peptide, Brain/blood , Oxygen Saturation , Radiography, Thoracic , Retrospective Studies
4.
Adv Chronic Kidney Dis ; 27(5): 365-376, 2020 09.
Article in English | MEDLINE | ID: covidwho-975047

ABSTRACT

Acute kidney injury (AKI) is common among hospitalized patients with Coronavirus Infectious Disease 2019 (COVID-19), with the occurrence of AKI ranging from 0.5% to 80%. The variability in the occurrence of AKI has been attributed to the difference in geographic locations, race/ethnicity, and severity of illness. AKI among hospitalized patients is associated with increased length of stay and in-hospital deaths. Even patients with AKI who survive to hospital discharge are at risk of developing chronic kidney disease or end-stage kidney disease. An improved knowledge of the pathophysiology of AKI in COVID-19 is crucial to mitigate and manage AKI and to improve the survival of patients who developed AKI during COVID-19. The goal of this article is to provide our current understanding of the etiology and the pathophysiology of AKI in the setting of COVID-19.


Subject(s)
Acute Kidney Injury/metabolism , COVID-19/metabolism , Cytokines/metabolism , Glomerulonephritis/metabolism , Thrombotic Microangiopathies/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Anti-Bacterial Agents/adverse effects , Antiviral Agents/adverse effects , Apolipoprotein L1/genetics , Ascorbic Acid/adverse effects , Azotemia/metabolism , Azotemia/pathology , Azotemia/physiopathology , COVID-19/pathology , COVID-19/physiopathology , Disease Progression , Glomerulonephritis/pathology , Glomerulonephritis/physiopathology , Glomerulonephritis, Membranous/metabolism , Glomerulonephritis, Membranous/pathology , Glomerulonephritis, Membranous/physiopathology , Hospital Mortality , Humans , Kidney Tubules, Proximal/injuries , Length of Stay , Myoglobin/metabolism , Nephritis, Interstitial/metabolism , Nephritis, Interstitial/pathology , Nephritis, Interstitial/physiopathology , Nephrosis, Lipoid/metabolism , Nephrosis, Lipoid/pathology , Nephrosis, Lipoid/physiopathology , Renal Insufficiency, Chronic , Rhabdomyolysis/metabolism , SARS-CoV-2 , Severity of Illness Index , Thrombotic Microangiopathies/pathology , Thrombotic Microangiopathies/physiopathology , Vitamins/adverse effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL